An Approximate Dynamic Programming (ADP) Approach for Aircraft Maintenance Scheduling

Qichen Deng, Bruno F. Santos, Richard Curran

q.deng@tudelft.nl
This project has received funding from the Clean Sky 2 Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreement No 681858, AIRMES project
1. Background and Related Work

2. Problem Formulation

3. Methodology

4. Outcomes and Evaluation

5. Summary and Future Work
Background and Related Work
Background

<table>
<thead>
<tr>
<th>Maintenance Costs (51 Airlines)</th>
<th>Average (USD/Year)</th>
<th>Min (USD/Year)</th>
<th>Max (USD/Year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Per Airline</td>
<td>295M</td>
<td>0.95M</td>
<td>2.28B</td>
</tr>
<tr>
<td>Per Aircraft</td>
<td>3.6M</td>
<td>0.67M</td>
<td>9.3M</td>
</tr>
<tr>
<td>Per Flight Hour</td>
<td>1,087</td>
<td>287</td>
<td>2,841</td>
</tr>
<tr>
<td>Per Flight Cycle</td>
<td>2,681</td>
<td>465</td>
<td>11,937</td>
</tr>
</tbody>
</table>

Aircraft Maintenance Checks

- **A-Check**
 - General inspection of the interior/exterior

- **C-Check**
 - Detailed functional and operational systems checks, cleaning and servicing

- **D-Check or IL (sometimes merged with C-Checks)**
 - The exterior paint is stripped and large parts of the outer paneling are removed, uncovering the airframe, supporting structure and wings for inspection of most structurally significant items
Related Work

<table>
<thead>
<tr>
<th>C-Check</th>
<th>M. Etschmaier, P. Franke, Long-Term Scheduling of Aircraft Overhauls, 1969</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H. Bauer-Stampfli, Near Optimal Long-Term Scheduling of Aircraft Overhauls by Dynamic Programming, 1971</td>
</tr>
<tr>
<td></td>
<td>N. J. Boere, Air Canada Saves with Aircraft Maintenance Scheduling, 1977</td>
</tr>
<tr>
<td></td>
<td>W. E. Moudani, F. Mora-Camino, A Dynamic Approach for Aircraft Assignment and Maintenance Scheduling by Airlines, 2000</td>
</tr>
<tr>
<td></td>
<td>……</td>
</tr>
<tr>
<td></td>
<td>……</td>
</tr>
</tbody>
</table>
Problem Formulation
Problem Definition

Aircraft is aged by:

Calendar Day (DY)

Flight Hour (FH)

Flight Cycle [2] (FC)

When is an aircraft scheduled C-check or A-check?

When is an aircraft scheduled C-check or A-check?

A-Check

120 DY
750 FH
750 FC

When is an aircraft scheduled C-check or A-check?

Maintenance Check and Duration [3]

A-Check:

<table>
<thead>
<tr>
<th></th>
<th>A-Check</th>
<th>A-Check</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 DY</td>
<td>120 DY</td>
<td>0 DY</td>
</tr>
<tr>
<td>0 FH</td>
<td>750 FH</td>
<td>0 FH</td>
</tr>
<tr>
<td>0 FC</td>
<td>750 FC</td>
<td>0 FC</td>
</tr>
</tbody>
</table>

1-2 day

C-Check:

<table>
<thead>
<tr>
<th></th>
<th>C-Check</th>
<th>C-Check</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 DY</td>
<td>730 DY</td>
<td>0 DY</td>
</tr>
<tr>
<td>0 FH</td>
<td>7500 FH</td>
<td>0 FH</td>
</tr>
<tr>
<td>0 FC</td>
<td>5000 FC</td>
<td>0 FC</td>
</tr>
</tbody>
</table>

1 to 4 weeks

Maintenance Constraints

- C-Check/A-Check Interval

- Hangar Capacity (Parallel C-/A-Check)
 - Maintenance Tools
 - Aircraft spare parts
 - Maintenance Engineers

- Commercial Peak Season
 - Weekends
 - Public Holidays
 - Summer
Objective and Decision Variable

Objective: Minimize the total unused FH of fleet

Decision Variables: Start dates of C-checks and A-checks
Methodology
Approximate Dynamic Programming
Challenge: Long computation time

Solution:

- Dynamic programming with forward induction
 - Divide a large problem to several small sub problems

- Define proper planning stage
 - 1 stage = 1 calendar day

- Define state of problem for decision making
 - State = \{DY/FH/FC since last C-Check/A-check\}
Multi-Dimensional Action Vector

Challenge: Computationally expensive to evaluate all actions
Solution: Define Aircraft (A-/C-) Check Priority

<table>
<thead>
<tr>
<th>C-Check</th>
<th>A-Check:</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/C 1: 0.5</td>
<td>A/C 1: 0.6</td>
</tr>
<tr>
<td>A/C 2: 0.9</td>
<td>A/C 2: 0.2</td>
</tr>
<tr>
<td>A/C 3: 0.7</td>
<td>A/C 3: 0.9</td>
</tr>
<tr>
<td>A/C 4: 0.8</td>
<td>A/C 4: 0.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C-Check</th>
<th>A-Check:</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/C 2: 0.9</td>
<td>A/C 3: 0.9</td>
</tr>
<tr>
<td>A/C 4: 0.8</td>
<td>A/C 1: 0.6</td>
</tr>
<tr>
<td>A/C 3: 0.7</td>
<td>A/C 4: 0.5</td>
</tr>
<tr>
<td>A/C 1: 0.5</td>
<td>A/C 2: 0.2</td>
</tr>
</tbody>
</table>

C-Check Priority: A/C 2, A/C 4, A/C 3, A/C 1
A-Check Priority: A/C 3, A/C 1, A/C 4, A/C 2
Multi-Dimensional State Variable

Example: No check, 1 C-check, 1 A-check

<table>
<thead>
<tr>
<th>Day</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>......</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outcomes</td>
<td>1</td>
<td>3</td>
<td>9</td>
<td>27</td>
<td>......</td>
<td>3^n</td>
</tr>
</tbody>
</table>

Impossible to evaluate all actions and save all outcomes!
Multi-Dimensional State Variable

Challenge: Difficult for discretization and large outcome space

Solution: Define utilization threshold for making decision

Sort utilization: \(\{u_{c,1}, u_{c,2}, u_{c,3}, \ldots (u_{c,i} > u_{c,i+1})\}, \{u_{a,1}, u_{a,2}, u_{a,3}, \ldots (u_{a,i} > u_{a,i+1})\} \)

Is there C-check/A-check slot?

Generate Utilization Threshold: \([U_c, U_a] = g(\text{Features})\)

If \(u_{c,1} \geq U_c\), allocate C-check
If \(u_{a,1} \geq U_a\), allocate A-check

Significantly reduce the search states!
Policy Function (PF)

- Define the rule that determines a decision at a state
- Introducing policy function reduces the number of search states
- Policy function generates the C-check/A-check utilization threshold: $[U_c, U_a] = g(\text{Features})$

- Features:
 - Mean utilization of fleet
 - Standard deviation of utilization
 - Current available C-check/A-check block
 - The coming commercial peak when no C-/A-check is allowed
Policy Iteration

- Find the optimal policy to make optimal decision
- Policy iteration requires many simulation runs to find the optimal coefficient of policy function
- Each simulation run simulates the decision given by policy function and step forward through time
- After the coefficients are found, the policy function can be used to make decision and respond to changes of input in seconds.
Policy Iteration Cont.

Formulation of Policy Function:

\[U_c = 1 - (k_{c,1}x_{c,1} + k_{c,2}x_{c,2} + k_{c,3}x_{c,3} + k_{c,4}x_{c,4} + \ldots) \]
\[U_a = 1 - (k_{a,1}x_{a,1} + k_{a,2}x_{a,2} + k_{a,3}x_{a,3} + k_{a,4}x_{a,4} + \ldots) \]

\(x_{c,1}, x_{c,2}, x_{c,3}, \ldots \) are the features related to C-check
\(x_{a,1}, x_{a,2}, x_{a,3}, \ldots \) are the features related to A-check

Machine Learning:

C - Check: \[k_{c,i} = k_{c,i} - \alpha_c \frac{\partial F}{\partial k_{c,i}} \]
A - Check: \[k_{a,i} = k_{a,i} - \alpha_a \frac{\partial F}{\partial k_{a,i}} \]

\(F \) — objective function; \(\alpha_c / \alpha_a \) — learning rates for C-check/A-check
Work Flow of Policy Iteration

1. Initial fleet data
2. Generate initial coefficient for policy function
3. Make C-check and A-check decisions from day 1 to day n
4. Are the partial derivative of all coefficients of PF 0?
 - Yes: Stop and return the C-check and A-check schedule
 - No: Tune the coefficients of policy function
Outcomes and Evaluation
Case study (Jan 2011 – Dec 2015)

- Test Fleet: 39 aircraft of A320 family
- C-Check Interval: 7500 FH / 5000 FC / 730 Days
 A-Check Interval: 750 FH / 750 FC / 120 Days
- C-Check Tolerance: 750 FH / 500 FC / 60 DY
 A-Check Tolerance: 75 FH / 75 FC / 12 DY
- No C-check is allowed from Dec 18th - Jan 7th, the weeks before and after Easter and Jun 1st – Sep 30th. No A-check on weekend and public holidays
- 3 slots available for C-checks, 1 slot for A-check

Selected Features

• C-Check:
 ▪ The coming commercial peak season when no C-check is allowed ($x_{c,1}$)
 ▪ Current available C-check block ($x_{c,2}$)
 ▪ Standard deviation of utilization ($x_{c,3}$)
 ▪ Constant ($x_{c,4}$)

• A-Check:
 ▪ The coming bank holiday when no A-check is allowed ($x_{a,1}$)
 ▪ Standard deviation of utilization ($x_{a,2}$)
 ▪ Constant ($x_{a,3}$)

Note: all the features are normalized between 0 and 1.
Coefficients of Policy Function

Policy Function:

\[
\begin{align*}
U_c &= 1 - (k_{c,1}x_{c,1} + k_{c,2}x_{c,2} + k_{c,3}x_{c,3} + k_{c,4}x_{c,4}) \\
U_a &= 1 - (k_{a,1}x_{a,1} + k_{a,2}x_{a,2} + k_{a,3}x_{a,3})
\end{align*}
\]

Coefficient

- \(k_{c,1}\) (Length of commercial peak season)
- \(k_{c,2}\) (Length of remaining C-check block)
- \(k_{c,3}\) (Standard deviation of C-check utilization)
- \(k_{c,4}\) (Constant)
- \(k_{a,1}\) (Length of public holiday or weekend)
- \(k_{a,2}\) (Standard deviation of A-check utilization)
- \(k_{a,3}\) (Constant)
Optimized vs. Airline Schedule

<table>
<thead>
<tr>
<th>Jan 1st 2011 - Dec 31st 2015</th>
<th>C-Check</th>
<th></th>
<th>A-Check</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average FH</td>
<td>Total C-Checks</td>
<td>Average FH</td>
<td>Total A-Checks</td>
</tr>
<tr>
<td>Airline</td>
<td>6644.5</td>
<td>108</td>
<td>689</td>
<td>1054</td>
</tr>
<tr>
<td>1-stage ADP</td>
<td>6686.9</td>
<td>102</td>
<td>682.2</td>
<td>1043</td>
</tr>
<tr>
<td>n-stage ADP</td>
<td>6900.0</td>
<td>95</td>
<td>728.9</td>
<td>972</td>
</tr>
</tbody>
</table>

- Reduce 13 C-checks
- Reduce 82 A-checks
- Lower maintenance costs
- Higher aircraft utilization
Utilization Distribution (C-Check)

Aircraft Utilization Distribution Under
Original C-Check Schedule

Expected Aircraft Utilization Distribution Under
Optimized C-Check Schedule (ADP)

Desired Utilization
Utilization Distribution (A-Check)

Aircraft Utilization Distribution Under Original A-Check Schedule

Expected Aircraft Utilization Distribution Under Optimized A-Check Schedule (ADP)
Summary and Future Work
Summary

- Define C-check/A-check priority to simplify the action vector.
- Use policy function to reduce search states.
- Both C-checks and A-checks are optimized in one step.
Future Work

• Calculation of workload associated with the schedule:
 • Workload capacity control

• Introduction of uncertainty (stochastic modelling):
 • Elapse times
 • Aircraft FH & FC

• Line maintenance planning:
 • Optimize the sequence of line maintenance
 • Allocate workforce
Acknowledgment

This project has received funding from the Clean Sky 2 Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreement No 681858, AIRMES project.

http://www.airmes-project.eu/
Thank you!

q.deng@tudelft.nl